首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   31篇
  国内免费   7篇
测绘学   8篇
大气科学   24篇
地球物理   182篇
地质学   207篇
海洋学   25篇
天文学   84篇
综合类   2篇
自然地理   21篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   22篇
  2019年   20篇
  2018年   23篇
  2017年   33篇
  2016年   50篇
  2015年   34篇
  2014年   39篇
  2013年   36篇
  2012年   22篇
  2011年   32篇
  2010年   25篇
  2009年   34篇
  2008年   36篇
  2007年   30篇
  2006年   14篇
  2005年   13篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1982年   2篇
  1979年   1篇
  1969年   1篇
排序方式: 共有553条查询结果,搜索用时 390 毫秒
71.
Estimating the temperature and metal abundance of the intracluster and the intragroup media is crucial to determine their global metal content and to determine fundamental cosmological parameters. When a spatially resolved temperature or abundance profile cannot be recovered from observations (e.g. for distant objects), or deprojection is difficult (e.g. due to a significant non-spherical shape), only global average temperature and abundance are derived. After introducing a general technique to build hydrostatic gaseous distributions of prescribed density profile in potential wells of any shape, we compute the global mass-weighted and emission-weighted temperature and abundance for a large set of barotropic equilibria and an observationally motivated abundance gradient. We also compute the spectroscopic-like temperature that is recovered from a single temperature fit of observed spectra. The derived emission-weighted abundance and temperatures are higher by 50 to 100 per cent than the corresponding mass-weighted quantities, with overestimates that increase with the gas mean temperature. Spectroscopic temperatures are intermediate between mass and luminosity-weighted temperatures. Dark matter flattening does not lead to significant differences in the values of the average temperatures or abundances with respect to the corresponding spherical case (except for extreme cases).  相似文献   
72.
Ice divide–dome behaviour is used for ice sheet mass balance studies and interpretation of ice core records. In order to characterize the historical behaviour (last 400 yr) of Dome C and Talos Dome (East Antarctica), ice velocities have been measured since 1996 using a GPS system, and the palaeo-spatial variability of snow accumulation has been surveyed using snow radar and firn cores. The snow accumulation distribution of both domes indicates distributions of accumulation that are non-symmetrical in relation to dome morphology. Changes in spatial distributions have been observed over the last few centuries, with a decrease in snow accumulation gradient along the wind direction at Talos Dome and a counter-clockwise rotation of accumulation distribution in the northern part of Dome C. Observations at Dome C reveal a significant increase in accumulation since the 1950s, which could correlate to altered snow accumulation patterns due to changes in snowfall trajectory. Snow accumulation mechanisms are different at the two domes: a wind-driven snow accumulation process operates at Talos Dome, whereas snowfall trajectory direction is the main factor at Dome C. Repeated GPS measurements made at Talos Dome have highlighted changes in ice velocity, with a deceleration in the NE portion, acceleration in the SW portion and migration of dome summit, which are apparently correlated with changes in accumulation distribution. The observed behaviour in accumulation and velocity indicates that even the most remote areas of East Antarctica have changed from a decadal to secular scale.  相似文献   
73.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
74.
Despite the important role played by the Sardinia‐Corsica block in the reconstruction of the Western Mediterranean geodynamics, the extent of involvement of the “Autochthonous” European margin exposed in Corsica (France) (i.e., Hercynian Corsica) in the Alpine orogeny remains uncertain. Stratigraphic and sedimentological studies in the post‐Variscan deposits on the Hercynian Corsica are scarce and even scarcer are the structural and metamorphic constraints. To face these uncertainties, we present new stratigraphic, structural and metamorphic data from the area of Razzo Bianco, Central Corsica, where a complete sequence belonging to the European continental margin is exposed. Field and structural investigations demonstrate that the sequence represents the easternmost edge of the downgoing European plate. Metamorphic studies on the Eocene deposits indicate that the margin was buried at depth up to blueschist facies conditions and, subsequently, it was progressively exhumed mainly through the activation of oblique top‐to‐the NW shear zones.  相似文献   
75.
Stream-water temperature is a key variable controlling chemical, biological, and ecological processes in freshwater environments. Most models focus on a single river cross-section; however, temperature gradients along stretches and tributaries of a river network are crucial to assess ecohydrological features such as aquatic species suitability, growth and feeding rates, or disease transmission. We propose SESTET, a deterministic, spatially explicit stream temperature model for a whole river network, based on water and energy budgets at a reach scale and requiring only commonly available spatially distributed datasets, such as morphology and air temperature, as input. Heat exchange processes at the air–water interface are modelled via the widely used equilibrium temperature concept, whereas the effects of network structure are accounted for through advective heat fluxes. A case study was conducted on the prealpine Wigger river (Switzerland), where water temperatures have been measured in the period 2014–2018 at 11 spatially distributed locations. The results show the advantages of accounting for water and energy budgets at the reach scale for the entire river network, compared with simpler, lumped formulations. Because our approach fundamentally relies on spatially distributed air temperature fields, adequate spatial interpolation techniques that account for the effects of both elevation and thermal inversion in air temperature are key to a successful application of the model. SESTET allows the assessment of the magnitude of the various components of the heat budget at the reach scale and the derivation of reliable estimates of spatial gradients of mean daily stream temperatures for the whole catchment based on a limited number of conveniently located (viz., spanning the largest possible elevation range) measuring stations. Moreover, accounting for mixing processes and advective fluxes through the river network allows one to trust regionalized values of the parameters controlling the relationship between equilibrium and air temperature, a key feature to generalize the model to data-scarce catchments.  相似文献   
76.
This paper investigates hydrothermal fluid circulation in pre- and syn-tectonic sediments associated with detachments faults. The study area, located in the Err Nappe (SE-Switzerland), preserves a portion of the Adriatic distal margin. Two sites were studied in combining fieldwork, petrography, geochemistry and fluid inclusion analysis: the Piz Val Lunga and Fuorcla Cotschna areas. Both preserve relationships between a spectacularly exposed rift-related extensional detachment fault and its footwall and hangingwall that consist of extensional allochthons and syn- to post-tectonic sediments. These areas register a complex fluid flow history characterized by dolomitization, de-dolomitization, calcite cementation, dolomite and quartz veining and diffuse silicification. Meso- and micro-scale observations allow defining two steps in fluid evolution, which are related to Jurassic rift activity. A first carbonate-rich event occurred before the exhumation of the granitic basement, and this was followed by a second event marked by a change in the fluid towards a silica-dominated chemistry. Homogenization temperatures of fluid inclusions (average Th = 120?130 °C), negative δ18O values and a radiogenic 87Sr/86Sr signatures of carbonate minerals support the hypothesis that both the pre-tectonic rocks constituting the allochthons and the syn-tectonic sediments overlying the detachment fault were crossed by a flux of over-pressured hydrothermal fluids originating from seawater that penetrated into the basement through fault and fracture systems. Field relationships show that this fluid circulation started latest in middle Early Jurassic time, when fault activity migrated from the proximal to the future distal margin. We propose that it evolved chemically as a result of the involvement of the granitic basement forming the footwall of the extensional detachment system. Hydrothermal activity continued until the Middle/Late Jurassic, when tectonic activity shifted outwards leading to the exhumation of mantle rocks. This paper provides an original contribution to better understand the complex evolution of hyperextended continental rift domains and to constrain their thermal regimes.  相似文献   
77.
78.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号